OCR Maths S1

Topic Questions from Papers

Bivariate Data

Answers

| 1 | (i)A
 Points lie close to straight line | B1
 B1 2 | Valid reason, eg "linear". Not "strong correlation" |
| :--- | :--- | :--- | :--- | :--- |

$2 \text { (i) }$	$\begin{aligned} & 2341657 \\ & 1234567 \\ & \Sigma d^{2}=14 \\ & r_{\mathrm{s}}=1-\frac{654 d^{2}}{7\left(7^{2}-1\right)} \\ & r_{s}=3 / 4 \end{aligned}$	$\begin{array}{ll}\text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & 5\end{array}$	Rank both sets consistently Find Σd^{2}, dep ranks attempted. Allow arith errors $\Sigma d^{2}=14$ Use formula correctly, dep $2^{\text {nd }}$ M1 Answer $3 / 4$ or a.r.t. 0.750
(ii)	Rankings generally agree $\operatorname{dep} r_{\mathrm{s}}>0.5$	B1f 1	Must have "agree" or "similar" etc, Not 'rankings well correlated' If $r_{\mathrm{s}}<0.5$, "generally don't agree": B1

(Q3, Jan 2005)

$3 \text { (i) }$	$\begin{aligned} & \frac{264-\frac{90 \times 15}{5}}{1720-\frac{90^{2}}{5}} \text { or } \frac{264-5 \times 18 \times 3}{1720-5 \times 18^{2}} \\ & =-0.06 \mathrm{AG} \\ & y-15 / 5=-0.06\left(x-{ }^{90} / 5\right) \\ & y=4.08-0.06 x \end{aligned}$	M1 A1 M1 A1 4	Formula correctly used -0.06 correctly obtained or $a={ }^{15} / 5-(-0.06) \times{ }^{90} / 5$ Complete equation correct
(ii)	Substitute $x=20.5(y=2.85)$ Substitute $x=19.5(y=2.91)$ $2.91-2.85=0.06$	$\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	Allow $20(y=2.88)$ or 20.49 Answer 0.06 or -0.06 , c.w.d
(iii)	-0.6, 0.5	$\begin{array}{ll} \text { B1 } \\ \text { B1 } & 2 \end{array}$	$\begin{aligned} & -0.6 \text { correct } \\ & 0.5 \text { correct } \end{aligned}$
	1.5 Calculated equation minimises this quantity	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & 2 \end{array}$	Not "Low value for Σe^{2} means points near line"
(v)	$\begin{aligned} & \overline{\mathrm{e}}=\sum e_{i} / 5 \\ & =0 \\ & \sum e_{i}^{2} / 5 \quad(- \text { her } \overline{\mathrm{e}})^{2} \\ & =0.3 \end{aligned}$	M1 A1 M1 A1 4	$\Sigma e_{i} / 5$ used Answer 0, cwd, cao $\Sigma e_{i}^{2} / 5$ 0.3 only, must see -0^{2} or -0 in variance. ie: No working: $\overline{\mathrm{e}}=0: \mathrm{M} 1 \mathrm{~A} 1 ; \operatorname{Var}=0.3: \mathrm{M} 1 \mathrm{~A} 0$

$\begin{array}{ll} \hline 4 \text { (i) } \begin{array}{l} \\ \\ \\ = \\ d^{2} \\ \\ 1 \end{array} \\ & -\frac{6 \times \text { their } 14}{5 \times(25-1)} \\ & =0.3 \end{array}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & 4 \end{array}$	Subtr \& squ 5 pairs \& add dep $1^{\text {st }}$ M1
(ii) Reverse rankings attempted 25341	$\begin{array}{ll} \mathrm{M} 1 & \\ \text { A1 } & 2 \\ \hline \end{array}$	3 correct T \& I to make $\Sigma d^{2}=40: 2 \mathrm{mks}$ or 0 mks
	6	

(Q1, June 2005)

5 (i) Correct subst in \geq two S formulae $14464.1-\frac{265 \times 274.6}{5}$	M1	Any correct version or $14464.1-5 \times 53 \times 54.92$
$\begin{aligned} & \sqrt{\left(14176.54-\frac{265^{2}}{5}\right)\left(15162.22-\frac{274.6^{2}}{5}\right)} \\ & \\ & =-0.868(3 \mathrm{sfs}) \end{aligned}$	M1 A1 3	$\begin{aligned} & \sqrt{\left(14176.54-5 \times 53^{2}\right)\left(15162.22-5 \times 54.92^{2}\right)} \\ & \text { or fully correct method with }(x-\bar{x})^{2} \text { etc } \end{aligned}$
(ii) No difference oe	B1	Or slightly diff or more acc because of rounding errors when mult by 2.54 oe Not just "more accurate"
(iii)Choose y on x stated	Blind	or implied, eg by $S^{2} / S_{x x}$ or $y=a x+b$
$\frac{14464.1-\frac{265 \times 274.6}{5}}{14176.54-\frac{265^{2}}{5}} \quad \text { or }-0.682$	M1	If state x on y, but wking is y on x : B1 or their $\frac{-89.7}{131.54}$ seen or $\frac{14464.1-5 \times 53 \times 54.92}{14176.54-5 \times 53^{2}}$ or correct subst into a correct formula $\underline{S}_{\underline{x}}$ $S_{x x}$
$\begin{gathered} y-{ }^{274.6} / 5=(\text { their }-0.682)(x-265 / 5) \\ y=91(.1)-0.68(2) x \end{gathered}$	M1ind A1	or $a=274.6 / 5$ - (their -0.682) $\mathrm{x}^{265 / 5}$ Simplif to 3 terms. Coeffs to ≥ 2 sfs
49.9 (3sfs) or 50	A1	Use of x on y : equiv M mks as above
	9	

(Q4, June 2005)

6 (i)	Negative, because (grad or coeff of x in $1^{\text {st }}$ equn or x-value or reg coeff or B or -0.6) is negative	B1 1	Neg because x incr \& y decr
(ii)	$\begin{aligned} & x=-1.6 \times 7.0+21 \\ & x=9.8 \end{aligned}$	$\begin{array}{ll} \mathrm{M} 1 & \\ \text { A1 } & \mathbf{2} \end{array}$	Sub $y=7.0$ in $2^{\text {nd }}$ eqn. Allow 1 sign error If sub in both must choose 2nd
(iii)	$\begin{aligned} & y=-0.6(-1.6 y+21)+13 \text { or similar } \\ & \bar{x}=5, \bar{y}=10 \end{aligned}$	M1 A1A1 3	Obtain correct eqn in 1 variable. Allow 1 num'l error Allow without bars
Total		6	

(Q1, June 2006)

8 (i)	$\begin{aligned} & \quad x=20 ; \quad y=11 ; \quad x^{2}=96 ; \quad y^{2}=31 ; \quad x y \\ & =52) \\ & S_{x x}=16 \quad \text { or } 3.2 \\ & S_{y y}=6.8 \quad \text { or } 1.36 \\ & S_{x y}=8 \\ & r=\frac{8}{\sqrt{(16 x 6.8)}} \quad \text { or } 1.6 \\ & =0 \\ & =0 \\ & =0 \end{aligned}$	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & \\ \text { M1 } & \\ & \\ \text { A1 } & 5 \end{array}$	$\operatorname{dep}-1 \leq r \leq 1$ ft their $S^{\prime} \mathrm{s}\left(S_{x x} \& S_{y y}+\mathrm{ve}\right)$ for M1 only
ii	Small sample oe	B1f 1	
Total		6	

(Q2, Jan 2007)

9 (i)	$\begin{aligned} & \frac{2685-\frac{140 \times 106.8}{8}}{} \text { or } \frac{2685-}{3500-\frac{140^{2}}{8}} \frac{8 \times 17.5 \times 13.35}{ग \times 10} 0.17 \mathrm{r}^{2} \\ & ={ }^{136} / 175 \text { or } 0.777(3 \mathrm{sfs}) \\ & y-106.8 / 8=0.777\left(x-{ }^{140} / 8\right) \\ & y=0.78 x-0.25 \text { or better or } y=136 / 175 x-1 / 4 \end{aligned}$	M1 A1 M1 A1 4	Correct sub in any correct formula for b (incl. $(x-\bar{x})$ etc) $\text { or } a=106.8 / 8-0.777 \mathrm{x}^{140} / 8 \quad \mathrm{ft} b \text { for M1 }$ $\geq 2 \text { sfs sufficient for coeffs }$
ii	$\begin{aligned} & 0.78 \times 12-0.25 \\ & =9.1(2 \mathrm{sfs}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { Alf } 2 \end{aligned}$	M1: ft their equn A1: dep const term in equn
iiia b	Reliable Unreliable because extrapolating oe	$\begin{array}{ll} \mathrm{B} 1 \\ \text { B1 } & 2 \end{array}$	Just "reliable" for both: B1
Total		8	

(Q5, Jan 2007)

10	$\begin{aligned} & \text { UK Fr } \mathrm{Ru} \text { Po } \mathrm{Ca} \\ & 1 \\ & 1 \end{aligned} 2 \begin{array}{lllllllll} & 3 & 4 & 5 & \text { or } & 5 & 4 & 3 & 2 \end{array} 1$	M1 A1 M1 M1 A1 5	Consistent attempt rank other judge All $5 d^{2}$ attem att'd Dep $2^{\text {nd }} \mathrm{M} 1$	
Total		5		

11 (i)	$r=\frac{212-\frac{24 \times 39}{5}}{\sqrt{\left(130-\frac{24^{2}}{5}\right)\left(361-\frac{39^{2}}{5}\right)}}$	B2 2	$\frac{24.8}{\sqrt{14.8 \times 56.8}} \text { or } \frac{24.8}{\sqrt{840.64}} \text { or } \frac{24.8}{3.85 \times 7.54} \text { or } \frac{24.8}{29}$ B2 for correct subst in r B1 for correct subst in any S
ii	$R=0.7 \text { or }(\mathrm{B})$ Definition of r_{s} is PMCC for ranks	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & 2 \end{array}$	(A) and (B) true: B0B0 dep $1^{\text {st }}$ B1
iii	$\begin{aligned} r & =0.855 \\ r_{s} & =0.7 \end{aligned}$	$\begin{array}{ll} \text { B1 } \\ \text { B1 } & 2 \end{array}$	or "unchanged": B1B1 Interchanged: B1
Total		6	

(Q3, Jan 2008)

12 (ia)	$\begin{aligned} & \frac{8736.9-\frac{202 \times 245.3}{7}}{7300-\frac{202^{2}}{7}} \text { or } \frac{1658.24}{1470.86} \\ & =1.127 \ldots \quad(=1.13 \mathbf{A G}) \end{aligned}$	M1 A1 2	correct sub in any correct formula for b eg $\frac{236.8921}{210.1249}$ must see 1.127 ... ; 1.127.. alone: M1A1
(b)	$\begin{aligned} & y-245.3 / 7=1.13(x-202 / 7) \\ & y=1.1 x+2.5(\text { or } 2.4) \text { or } y=1.13 x+2.43 \end{aligned}$	$\begin{array}{ll} & \\ \text { M1 } & \\ \text { A1 } & \end{array}$	$\begin{aligned} & \text { or } a=2453_{7}-1.13 \times{ }^{202} / 7 \\ & 2 \text { sfs suff. } \\ & \text { (exact: } y=1.127399 . x+2.50934 \ldots \text {). } \end{aligned}$
(ii)(a)	$(1.1(.) \times 30+.2.5(.))=$.35.5 to 36.5	B1f 1	
(b)	$(1.1(.) \times 100+.2.5(.))=$.112.4 to 115.6	B1f 1	
(iii)	(a) Reliable (b) Unreliable because extrapolated	$\begin{aligned} & \text { B1 } \\ & \text { B1 } 2 \end{aligned}$	Both reliable: B1 (a) more reliable than (b) B1 because (a) within data or (b) outside data B1 Ignore extras or
Total		8	

13 (i)	Because growth may depend on pH oe or expt is investigating if y depends on x	B1 1	In context. Not x is controlled or indep
ii	$\begin{aligned} & S_{x y}=17082.5-66.5 \times 1935 / 8(=997.8125) \\ & S_{x x}=558.75-66.5^{2} / 8 \quad(=5.96875) \\ & b=S_{x y} / S_{x x} \\ & =167(3 \mathrm{sfs}) \\ & \\ & y-1935 / 8=" 167 "(x-66.5 / 8) \\ & y=-1150+167 x \end{aligned}$	M1 A1 M1 A1 4	Correct sub into any correct b formula or $a=1935 / 8-$ " 167 " $\times 66.5 / 8$ cao NB 3 sfs
iii	$\begin{aligned} & y=-1150+167 \times 7 \\ & =19 \text { to } 23 \end{aligned}$	$\begin{array}{ll} \mathrm{M} 1 \\ \text { A1 } & 2 \end{array}$	ft their eqn for M1 only
iv	No (or little) relationship or correlation	B1 1	or weak or small corr'n. Not "agreement"
va	Reliable as r high oe	B1 1	Allow without "interpolation" oe, but must include r high
b	Unreliable as extrapolationoe	B1 1	or unreliable as gives a neg value
vi	Unreliable (or No) because r near 0 or because little (or no or small) corr'n (or rel'n)	B1 1	or No because Q values vary widely for $\mathrm{pH}=8.5$
Total		11	

(Q9, Jan 2008)

14 (i)		M1 A1 M1dep M1dep A1 5	```attempt ranks correct ranks \(S_{x x}\) or \(S_{y y}=55-15^{2} / 5(=10)\) or \(S_{y y}=39-15^{2} /{ }_{5}(=-6)\) \({ }^{-6} / \sqrt{ }(10 \times 10)\)```
(ii)	$1 \& 3$ Largest neg r_{s} or large neg r_{s} or strong neg corr'n or close(st) to -1 or lowest r_{s}	Blind B1dep 2	ft if $-1<$ (i) <-0.9, ans $1 \& 2$ NOT: furthest from 0 or closest to ± 1 little corr'n most disagreement
Total		7	

(Q4, Jan 2009)

15	$\begin{aligned} & \text { first two } d ’ s= \pm 1 \\ & \Sigma d^{2} \text { attempted } \\ & 1-\frac{6 \times}{} \times 2 \text { " } \\ & =2\left(7^{2}-1\right) \\ & ={ }^{27} /_{28} \text { or } 0.964(3 \mathrm{sfs}) \end{aligned}$	B1 M1 M1dep A1	$\begin{array}{ll} \hline S_{x x} \text { or } S_{y y}=28 & \text { B1 } \\ S_{x y}=27 & \text { B1 } \\ S_{x y} / \sqrt{ }\left(S_{x x} S_{y y}\right) & \text { M1 dep B1 } \\ 1234567 \& 1276543\left(\mathrm{ans}^{2} / 7\right): \text { MR, lose A1 } \end{array}$
Total		4	

(Q2, June 2009)

16 (a)	A: diag or explanation showing pts close to st line, always increasing B:Diag or expl based on $\mathrm{r}=1=>\mathrm{pts}$ on st line $\Rightarrow \mathrm{r}(\mathrm{s})=1$	B1 B1 B1 3	Diag or expl based on $\mathrm{r}(\mathrm{s}) \neq 1 \Rightarrow \mathrm{pts}$ not on st line => $\mathrm{r}=1$ $\mathrm{r}=1=>$ pts on st line\&r(s) $\neq 1=>$ pts not on st line B1B1 $\mathrm{r}=1=>\mathrm{r}(\mathrm{~s})=1 \mathrm{~B} 2$
(b)	$\begin{aligned} & \bar{y}=2.4 \times 4.5+3.7 \\ & =14.5 \\ & 4.5=0.4 \times \text { " } 14.5 \text { "- }-c \\ & c=1.3 \\ & \mathrm{a}^{\prime}=\mathrm{x}-\mathrm{b} \mathrm{y} \mathrm{y}:-14.5 \mathrm{M} 1 \mathrm{~A} 1 ; \\ & \text { then } \mathrm{a}^{\prime}=4.5-0.4 \mathrm{x} 14.5=-1.3 \mathrm{M} 1 \mathrm{~A} 1 \end{aligned}$	M1 A1 M1 A1 4	Attempt to sub expression for y $\mathrm{x}=0.96 \mathrm{x}+1.48$-c oe sub $x=4.5$ and solve $\mathrm{c}=1.3$ 14.5 M1A1. (y-3.7)/2.4=0.4y-c and sub14.5 M1 c=1.3 A1
Total		[7]	

(Q6, Jan 2010)

17 (i)	x independent or controlled or changed Value of y was measured for each x x not dependent	B1 1	Allow Water affects yield, or yield is dependent or yield not control water supply Not just y is dependent Not x goes up in equal intervals Not x is fixed
ii	(line given by) minimum sum of squs	$\begin{aligned} & \text { B1 } \\ & \text { B1 } 2 \end{aligned}$	B1 for "minimum" or "least squares" with inadequate or no explanation
iii	$\begin{array}{ll} S_{x x}=17.5 & \text { or } 2.92 \\ S_{y y}=41.3 & \text { or } 6.89 \\ S_{x y}=25 & \text { or } 4.17 \\ r=\frac{S_{x y}}{\sqrt{\left(S_{x x} S_{y y}\right)}} & \\ =0.930(3 \mathrm{sf}) & \end{array}$	B1 M1 A1 3	or $91-21^{2} / 6$ or $394-46^{2} / 6$ B1 for any one or $186-{ }^{21 \times 46} / 6$ dep B1 0.929 or 0.93 with or without wking B1M1A0 SC incorrect $n:$ max B1M1A0
iv	Near 1 or lg, high, strong, good corr'n or relnship oe Close to st line or line good fit	$\begin{aligned} & \text { B1ft } \\ & \text { B1 } 2 \end{aligned}$	$\|r\|$ small: allow little (or no) corr'n oe Not line accurate. Not fits trend
Total		8	

18 (i)	$\begin{aligned} & S_{h m}=0.2412 \\ & S_{h h}=0.10992 \\ & S_{m m}=27.212 \\ & r=\frac{S_{h m}}{\sqrt{ }\left(S_{h h} S_{m m}\right)} \\ & =0.139(3 \mathrm{sfs}) \end{aligned}$	B1 M1 A1 3	Allow x or $\div 5$ any one S correct ft their $S \mathrm{~s}$
(ii)	Small, low or not close to 1 or close to 0 oe pts not close to line oe	B1 ft B1	$1^{\text {st }} \mathrm{B} 1$ about value of r $2^{\text {nd }}$ B1 about diag
(iii)	none or unchanged or "0.139". oe	B1 1	
(iv)	Larger oe	B1 1	
Total		[7]	

(Q3, Jan 2010)

19 (i)	Opposite orders or ranks or scores or results or marks $r_{s}=-1$	B1 1	or reversed, or backwards, or inverse or as one increases the other decreases Needs reason AND value
ii	$\begin{aligned} & \text { Attempt } \Sigma d^{2} \\ & 1-\frac{6 \times \Sigma d^{2}}{3\left(3^{2}-1\right)} \\ & =-\frac{1}{2} \text { oe } \end{aligned}$	M1 M1 A1 3	dep $1^{\text {st }}$ M1 Allow use wrong table for M1M1
iii	$\begin{aligned} & 3!\text { or }{ }^{3} \mathrm{P}_{3} \text { or } 6 \\ & 1 \div \text { their ' } 6 \text { ' } \\ & \frac{1}{6} \text { oe eg } \frac{6}{36} \end{aligned}$	M1 M1 A1 3	r attempt list possible orders of $1,2,3 \geq 3$ orders $2^{\text {nd }}$ M1 for fully correct method only or $\frac{1}{3} \times \frac{1}{2}(\times 1):$ M1M1
Total		7	

(Q2, June 2010)

20 (i)	If x is contr (or indep) or y depend't, use y on x If neither variable contr'd (or indep) AND want est y from x : use y on x	B1 B1 2	Allow x increases constantly, is predetermined, you choose x, you set x, x is fixed, x is chosen Allow y not controlled AND want est y from x Ignore incorrect comments
iia	$\begin{array}{ll} S_{x x}=510000-\frac{1800^{2}}{9} & (=150000) \\ S_{x y}=4080-\frac{1800 \times 14.4}{9} & (=1200) \\ b=\frac{12000^{\prime}}{150000^{\prime}} & (=0.008) \\ y-\frac{14.4}{9}=0.008\left(x-\frac{1800}{9}\right) \\ y=0.008 x(+0) & \end{array}$	M1 M1 M1 A1 4	or $\frac{510000}{9}-200^{2} \quad(=16666.7)$ or $\frac{4080}{9}-200 \times 1.6(=133.33)$ M1 for either S $b=\frac{133.33^{\prime}}{16666.7^{\prime}} \quad$ dep correct expressions both S 's or $a=\frac{14.4}{9}-0.008 \times \frac{1800}{9} \quad(=0)$ Must be all correct for M1 CAO
-iib	312.5 or 313	Bift 1	ft their equan in (iia)
iic	-0.4	Bift 1	ft their equn in (iia)
iid	Contraction oe Unreliable because extrapolated oe	$\begin{array}{ll} \text { B1 (ft) } \\ \text { B1 } & 2 \end{array}$	or length decreased, shorter, pushed in, shrunk, smaller or not in the range of x or not in range of previous results
Total		10	

(Q3, June 2010)

21 (i)	$\begin{aligned} & \frac{7351.12-\frac{86.6 \times 943.8}{12}}{\sqrt{\left(658.76-\frac{86.6^{2}}{12}\right)\left(83663-\frac{943.8^{2}}{12}\right)}} \text { or } \frac{540.03}{\sqrt{33.80 \times 9433}} \\ & =0.9564 \ldots \text { or } 0.956 \text { or } 0.96 \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	Must see at least 2 sfs	$1^{\text {st }}$ M1 for correct subst in any correct S formula $2^{\text {nd }} \mathrm{M} 1$ for all correct subst'n in any correct r formula 0.96 or correct better, no working: M1M1A1 eg $0.958 \rightarrow 0.96$ with correct working M1M1A0 without working: MOMOAO
ii	Strong (or high or good or close etc) relationship (or corr'n or link) between amount spent on advert \& profit	B1 1	Allow Almost complete relationship or Very positive corr'n or Very reliable relationship or Near perfect relationship between spend on advert \& profit oe, in context	Must state or imply "strong" or "good" or equiv \& in context but NOT Strong agreement between etc NOT High spend on ads produces high profits NOT The more spent on adverts, the higher the profit NOT Positive corr'n between spend on ads \& profits NOT There is a relationship between spend on ads \& profit NOT There is a great relationship between etc NOT ans involving "proportion(al)" Ignore irrelevant or incorrect If incorrect $r(<0.9)$ in (i), no ft for ans "weak rel'nship" here; but correct ans here scores B1 even if inconsistent with their r
iii	Relationship may not continue Corr'n not imply causation	B1 B1 2	Can't extrapolate Any indication that pattern may not continue Must state or imply referring to future Increase in profit may not be due to increase in spend on advertising. Variables may be increasing separately	Allow without context Examples: Can't predict future; Things can change May be recession ahead; Economic situation may change Cost of advertising may increase If spend too much on ads, profit may be reduced as a result Advertising may not be as successful in the future Item may go out of fashion NOT Spending on adverts may not bring high profits NOT Spending more on adverts may not bring higher profits (Since these just restate the question) NOT More money spent on ads will not affect profit Both variables may be affected by a third Other factors may affect profits Advertising not the sole factor affecting profits Two different categories of reason needed, as given above. Two reasons which both fall under the same category: only B1 NOT Because corr'n not equal to 1
iv	$\begin{aligned} & b=\frac{7351.12-\frac{86.6 \times 943.8}{12}}{658.76-\frac{86.6^{2}}{12}} \\ & =15.9788 \text { or } 16.0 \\ & y-\frac{943.8}{12}=" 16.0 \text { " }\left(x-\frac{86.6}{12}\right) \\ & y=16 x-37 \text { or better } \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & 4 \end{array}$	$\text { or } \frac{S_{x y}}{S x x}$ or $a=\frac{943.8}{12}-" 16.0 " \times \frac{86.6}{12}$ $(y=15.9788 x-36.664)$	ft values of $S_{x y} \& S_{x x}$ if clearly shown in (i) Coeffs not nec'y rounded, but would round to 16 \& 37 These marks can be earned in (v) if not contradicted in (iv) If x on y line found: M-marks only $(x=2.71+0.0572 y)$
v	$\begin{aligned} & " 16 \times 7.4-" 37 " ; \\ & 81400 \text { to } 81750 \end{aligned}$	M1 Alf 2	81.4 thousand to 81.7 thousand: M1A1 but 81.4 to 81.7 alone:	$" 16 " \times 7400-" 37 \bar{"} \text { M0АА }$ ft their (iv)
Total		12		

22 (i)	EDCBA	B1 1	$\begin{array}{ll} \hline \text { A } & 5 \\ \text { B } & 4 \\ \text { C } & 3 \\ \text { D } & 2 \\ \text { E } & 1 \end{array}$	NOT just 5, 4, 3, 2, 1
iia	$\begin{aligned} & 1-\frac{6 \Sigma d^{2}}{5\left(5^{2}-1\right)}=0.9 \\ & 1-\frac{6 \times \Sigma d^{2}}{5 \times 24}=0.9 \quad \text { or } 0.1=\frac{6 \times \Sigma d^{2}}{5 \times 24} \\ & \left(\Sigma d^{2}=2 \mathbf{A G}\right) \end{aligned}$	$\begin{array}{\|ll} \hline \text { M1 } & \\ & \\ \text { A1 } & 2 \end{array}$	One correct step or better \& nothing incorrect for A1	$\begin{aligned} & 1-\frac{6 \times 2}{5\left(5^{2}-1\right)} \\ & =1-\frac{6 \times 2}{5 \times 24} \text { or } 1-\frac{12}{5 \times\left(5^{2}-1\right)} \text { One correct step or better \& nothing } \end{aligned}$ incorrect for A1 $(=0.9 \mathbf{A G})$
b	$d^{2}: 0,0,0,1,1$ any order BACDE or similar	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & 2 \end{array}$	or $d: 0,0,0,1,-1$ any order Any two adjacent dogs interchanged	May not be seen If clearly comparing second race with third; DECBA or similar: B1, but must be clear
Total		5		

(Q8, Jan 2011)

23 (ia)	$\begin{aligned} & \frac{3247-\frac{251 \times 65}{5}}{\sqrt{\left(14323-\frac{251^{2}}{5}\right)\left(855-\frac{65^{2}}{5}\right)}} \quad \text { or } \frac{-16}{\sqrt{1722.8 \times 10}} \\ & =-0.1219 \ldots \end{aligned}$	$\begin{aligned} & \text { M2 } \\ & \text { A1 } 3 \end{aligned}$	M1 for correct subst in any correct S formula M2 for correct subst' n in any correct r formula Must see at least 4 sfs	or $\frac{-80}{\sqrt{8614 \times 50}}$ Allow -0.1218
b	Poor/no/little/weak/not strong corr'n or rel'nship or link between income \& distance oe	B1 1	or slight neg/weak corr'n (oe) between income \& distance In context, ie any comment on income \& distance, even if incorrect	eg, Poor neg corr'n, so higher distance, lower income No rel'nship. Low income doesn't cause low distance NOT "Not proportional ..." NOT "negative corr'n ..." No recovery of this mark in (ii)
c	No effect or -0.122 oe	B1 1	eg "Nothing" or "None" oe	Ignore other NOT "Little effect" NOT "Not much effect"
ii	r close to 0 , or small, or poor corr'n oe or $r=-0.122$ Unreliable	B1 B1dep 2	or Weak/no corr'n or poor rel'nship oe or No evidence to link sales \& distance Condone "innacurate" or "incorrect" or "less reliable" or "not that reliable" "The data is unreliable" Must have correct reason	or because small sample Ignore other Allow: "Unreliable because pts do not fit a st line" "Unreliable because pts are scattered" "Unreliable because not strong neg" "Unreliable because r not close to -1 " "Unreliable because r smaller than (-)0.7" NOT "Unreliable because extrapolated": B0B0 but "Unreliable because extrapolated and poor corr'n": B1B1
Total		7		

(Q1, June 2011)

24	Attempt ranks 4123 or 1234 or 1234 oe $2134 \quad 13421423$ Σd^{2} attempted (or 6) $1-\frac{6 \Sigma d^{2}}{4\left(4^{2}-1\right)}$ $=\frac{2}{5} \mathrm{oe}$	$\begin{array}{\|ll} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 5 \end{array}$	Ignore labels of rows or columns No ranks seen, $d=(0), \pm 1, \pm 1, \pm 2$, or $d^{2}=(0), 1,1,4$ any order: M1A1 $\operatorname{NOT}(\Sigma d)^{2}$	No wking, $\Sigma d^{2}=6$: M1A1M1 No wking, $\Sigma d^{2}=$ eg 14: M0A0M0, but can gain $3^{\text {rd }}$ M1 No wking, ans $\frac{2}{5}$: Full mks Allow both sets of ranks reversed NB incorrect method: 2341 2134 OR $d=(0), \pm 2, \pm 1, \pm 3$ any order OR $d^{2}=(0), 4,1,9$ any order (leading to $\Sigma d^{2}=14$ and $r_{s}=-\frac{2}{5}$): M0A0M1M1A0
Total		5		

25 (i)	x	B1 1	Ignore explanations. "Neither" or "Both": B0	
ii	Diag showing vertical differences only State that sum of squares of these is min oe	$\text { B1 } 2$	Allow description instead of diag: "Distances from pts to line // to y-axis" oe dep vert or horiz lines (not both) drawn or described	Allow \geq one line, from a point to the line Must have Min, Squares, Distances \& Sum
iii	-1 Ranks opposite or reversed or perfect neg corr'n between ranks oe	B1 B1dep 2	Not approx -1 As x increases, y decreases	Allow eg: -1 because neg corr'n so ranks must be reversed Ignore other NOT neg corr'n or strong neg rel'nship oe NOT comment about "disagreement" or "agreement"
iv	"Negative" or "Not -1"	B1 1	$\begin{aligned} & \hline \text { eg "Strong neg" } \\ & \text { or any negative value >-1 } \\ & \text { or "Close to }-1 \text { " } \\ & \hline \end{aligned}$	Any implication of Negative, except NOT "Negative gradient" and NOT " -1 " given as the value of r
Total		6		

(Q7, June 2011)

26	(i)		x because values (or depths) are fixed (or controlled or chosen or predetermined or manipulated or given oe) because they can be changed or it is changed or because it is not measured ie not "read off" oe or because we change the values ourselves	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	Allow "because it goes up in intervals" or "because it is taken at set intervals" Ignore all else NB " x is changed" B 1 , but " x changes" B 0	NOT: x, as values are constant x, as y depends on x x as \% sand depends on depth Depth, as not affected by \% sand content x, as it is not dependent x, because y is measured x, because it changes y, which is the depth and this is controlled
	(ii)		$\begin{array}{ll} S_{x x}=7344-\frac{216^{2}}{9} & (=2160) \\ S_{y y}=30595-\frac{512.4^{2}}{9} & (=1422.36) \\ S_{x y}=10674-\frac{216 \times 512.4}{9} & (=-1623.6) \\ r=\frac{"-1623.6^{"}}{\sqrt{" 2160^{\prime \prime} \times 1422.36 "}} & \\ =-0.926(3 \mathrm{sfs}) & \end{array}$	M1 M1 A1 [3]	correct subst in any S formula correct subst in all $S \mathrm{~s}$ \& in r	
	(iii)	(a)	$\begin{align*} & b=\frac{"-1623.6 "}{" 2160 "} \quad \text { or }-0.75 \ldots \text { or }-\frac{451}{600} \\ & y-\frac{512.4}{9}="-0.75 \ldots "\left(x-\frac{216}{9}\right) \\ & y=-0.75 x+75(.0)(2 \mathrm{sf}) \tag{M1}\\ & \text { or } y=-\frac{451}{600} x+\frac{5623}{75} \end{align*}$	M1 M1 A1 [3]	ft $S_{x y} \& S_{x x}$ from (ii) or $a=\frac{512.4}{9}-0.75 \ldots \times\left(-\frac{216}{9}\right)$ or $\frac{5623}{75}$ 2 sf is enough Allow $y=-0.75 x+(-75)$	If ans to (i) is $y, \& x$ on y found here: $\begin{array}{ll} b^{\prime}=\frac{"-1623.6^{\prime \prime}}{" 1422.36^{\prime \prime}} \quad(=-1.14) & \text { M1 } \\ x-\frac{216}{9}="-1.14 "\left(y-\frac{512.4}{9}\right) & \text { M1 } \\ x=-1.14 y+89(.0) & \text { A1 } \end{array}$ If ans to (i) is x, but x on y found here: B1 only for $x=-1.14 y+89(.0)$
	(iii)	(b)	r close to -1 (or high or strong), $\|r\|$ close to 1 25 within range of data oe, so reliable 100 outside range of data oe, so unreliable Must give reasons Allow "accurate" instead of "reliable"	B1 B1 B1 [3]	Allow strong or good or high corr'n or rel'nship etc	or strong neg corr'n. Award this mark even if comment linked to 100 instead of linked to 25 . BUT: " r close to -1 , so unreliable": B0 Can still score next marks if mention "within" and "outside range" or 100 gives neg \%age "Reliable because r near -1 " B1B0B0 "Small sample so unreliable" B0B0B0 Ignore all else

(Q2, Jan 2012)

27	(a)	3 5 1 4 2 3 1 5 2 4 1 4 3 5 2 5 2 3 1 4 Σd^{2} attempted (=10) $\begin{aligned} & r_{s}=1-\frac{6 \Sigma d^{2}}{5\left(5^{2}-1\right)} \quad \text { dep } \geq \text { M1 gained } \\ & =0.5 \end{aligned}$	M1 A1 M1 M1 A1 [5]	Attempt ranks for both variables Correct ranks May be implied by $\Sigma d^{2}=10$ $\begin{aligned} & S_{x x} \text { or } S_{y y}=55-\frac{15^{2}}{5}(=10) \text { or } S_{x y}=50-\frac{15^{2}}{5} \\ & (=5) \\ & \frac{5}{\sqrt{10 \times 10}} \end{aligned}$	If use alphabetical order for one or both sets of ranks, M0A0. eg if $1,2,3,4,5$, seen or $\Sigma d^{2}=14$ or 16 , check carefully. But can score $2^{\text {nd }} \& 3^{\text {rd }}$ M1s. Also see example below $\begin{array}{r} \mathrm{A}=1, \mathrm{~B}=2 \text { etc } \quad \text { eg } 24153 \\ 42351 \\ \text { Max M0A0M1M1A0 } \end{array}$
	(b)	$n\left(n^{2}-1\right)$ greater or increases or becomes $(n+1)\left((n+1)^{2}-1\right)$ Σd^{2} unchanged (or not increase) Allow d^{2} unchanged r_{s} greater	B1ind B1ind B1 [3]	or "denom increases" or " \div by larger number"or "fraction decreases" or "value taken from 1 decreases" oe or $d=0$ or $d^{2}=0$ or the difference is 0 dep \geq B1 or no explanation "Little diff between rankings so r_{s} same" or "rankings unchanged" B0B0B0	Allow increases to 6×35 NOT just " n increases" NOT $n\left(n^{2}-1\right)$ changes NOT "difference is unchanged" Use of incorrect formula can score max B1B1B0 (B0 for r_{s} greater) "Increases because more agreement" B1 only

(Q4, Jan 2012)

(Q1, June 2012)

(Q5, June 2012)

30	(i)	$\begin{array}{ll} S_{x x}=8700000-\frac{7000^{2}}{6} & (=533333) \\ S_{x y}=509900-\frac{7000 \times 456}{6} & (=-22100) \\ b=-\frac{" 22100 "}{7533333 "} \text { or }-\frac{663}{16000} & (=-0.0414) \\ y-\frac{456}{6}="-0.0414 "\left(x-\frac{7000}{6}\right) \\ y=-0.0414 x+124(3 \mathrm{sf}) \end{array}$	M1 M1 M1 A1 [4]	Correct subst'n in any correct S formula Correct subst'n in any correct b formula from two correct S formulae ft their b except if using r or $y=-\frac{663}{16000} \quad x+\frac{3979}{32} \quad$ or $y=-0.041 x+124$	or $a=\frac{456}{6}-("-0.0414 ") \times \frac{7000}{6}$ oe $\mathrm{ft} " b "$ Allow $y=-0.04 x+124$ if $-0.041 \ldots$ seen above
	(ii)	70 to 72	$\begin{aligned} & \hline \text { B1 } \\ & {[1]} \\ & \hline \end{aligned}$	or 71 per thousand, NOT 71000	No ft from (i) Ignore method
	(iii)	Extrapolation oe Corr'n not high or small sample	B1 B1 [2]	Allow "2400 is beyond graph" "Not shown on the graph" or $\} 1^{\text {st }} \mathrm{B} 1$ only "Line drops low, or below 0" $\}$ "Outlier" Poor corr'n oe, or pts not close to line oe $2^{\text {nd }}$ B1	"Line only allows for countries poorer than Nigeria" Allow "Value for Nigeria is - ve $1^{\text {st }} \mathrm{B} 1$ NOT "Other factors may apply" oe Ignore all else
	(iv)	$\begin{aligned} & S_{x x}=8700000+1300^{2}-\frac{(7000+1300)^{2}}{7} \\ & S_{y y}=36262+96^{2}-\frac{(456+96)^{2}}{7} \\ & S_{x y}=509900+1300 \times 96-\frac{8300 \times 552}{7} \\ & r=\frac{"-19814.3^{\prime \prime}}{\sqrt{" 548571 " \times 1948.86 " ~}} \\ & =-0.606(3 \mathrm{sf}) \end{aligned}$	M1 A1 M1 A1 [4]	or $10390000-\frac{(8300)^{2}}{7}=\frac{3840000}{7}$ or 548571 or $45478-\frac{552^{2}}{7}=\frac{13642}{7}$ or 1948.86 or $634700-\frac{8300 \times 552}{7}=-\frac{138700}{7}$ or -19814.3 Correct subst'n in any correct r formula from 3 correct subs in 3 correct S formulae, ie all correct method	Correct sub in any correct S formula M1 Correct value of any S seen or implied by r A1 SC If $n=6$, but otherwise correct allow M1A0M1A0 (ans $r=-0.574$, must see wking)
	(v)	No effect oe	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	Stay the same oe Allow just "No"	Ignore all else

(Q3, Jan 2013)

31	(i)		$\begin{aligned} & \Sigma d^{2}=n \text { seen or implied } \\ & 1-\frac{6 \times \text { anything }}{n\left(n^{2}-1\right)}=\frac{63}{65} \quad \text { or } \frac{6 \times \text { anything }}{n\left(n^{2}-1\right)}=\frac{2}{65} \\ & \frac{6}{\left(n^{2}-1\right)}=\frac{2}{65} \\ & \begin{array}{ll} n=14 & \text { or eg } 390=2\left(n^{2}-1\right) \\ \text { NOT } n= \pm 14 \end{array} \end{aligned}$	M1 M1 A1 depM2 A1 [4]	eg $1-\frac{6 \times \Sigma d^{2}}{n\left(n^{2}-1\right)}$ or $1-\frac{6 \times n^{2}}{n\left(n^{2}-1\right)}$ or $1-\frac{6 \times 1^{n}}{n\left(n^{2}-1\right)}$ or $1-\frac{6 \times 6^{2}}{n\left(n^{2}-1\right)}=\frac{63}{65}$ Any correct eqn after cancelling n or take out factor of n; can be implied by $n=14$ But A0 if $n=14$ clearly follows from incorrect working If no working or unclear working, but $\mathrm{n}=14$, M1M1A1A1	Trial method: $$
	(ii)	(a)	$r=1 \Rightarrow$ st line, hence true (or $r_{s}=1$) oe Explanation essential Must state or imply "true"	B1 [1]	$r=1 \Rightarrow y$ incr as x incr, so $r_{s}=1$ oe Allow "True because perfect corr'n" or "True because $r=1$ means pts ranked in order so $r_{s}=1$ " " $r=1$ means the ranks will agree" " $r=1$ means all d 's are 0 , hence $r_{s}=1-0=1$ "	NOT " r incr so ranks incr" NOT " $r_{s}=r$ for ranks so true" NOT "True because strong corr'n"
	(ii)	(b)	Diag, ≥ 3 pts, not on st line but with $x_{n+1}>x_{n}$ \& $y_{n+1}>y_{n}$, Zig zag line or curve, moving up \& right so r_{s} can still be 1 eg "expon'l curve gives $r \neq 1$ but $r_{s}=1$ " B1B1	B1 B1dep [2]	Ignore explan if correct diag given Ignore any st line drawn Allow numerical example for which $r \neq 1$ but $r_{s}=1$. If expl'n contradicts diag, mark diag For $2^{\text {nd }} \mathrm{B} 1$ must state or imply "false"	

