OCR Maths S1 Topic Questions from Papers Bivariate Data Answers

PhysicsAndMathsTutor.com

1	(i)	A Points lie close to straight line	B1 B1	2	Valid reason, eg "linear". Not "strong correlation"
	(ii)	C Non-linear relationship	B1 B1	2	eg curve or quadratic

⁽Q1, Jan 2005)

2 (i)	$2 3 4 1 6 5 7 1 2 3 4 5 6 7 \Sigma d^{2} = 14 r_{s} = 1 - \frac{6\Sigma d^{2}}{7(7^{2} - 1)} r_{s} = \sqrt[3]{4} 6 5 4 7 2 3 1 7 6 5 4 3 2 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7$	M1 M1 A1 M1 A1 5	Rank both sets consistently Find Σd^2 , dep ranks attempted. Allow arith errors $\Sigma d^2 = 14$ Use formula correctly, dep 2 nd M1 Answer ³ / ₄ or a.r.t. 0.750
(ii)	Rankings generally agree dep $r_{\rm s} > 0.5$	B1f 1	Must have "agree" or "similar" etc, Not 'rankings well correlated' If $r_s < 0.5$, "generally don't agree": B1

(Q3, Jan 2005)

3	(i)	$\frac{264 - \frac{90 \times 15}{5}}{90^2} \text{ or } \frac{264 - 5 \times 18 \times 3}{1720 - 5 \times 18^2}$	M1		Formula correctly used
		$1720 - \frac{50}{5}$			2 μ
		= -0.06 AG	A1		-0.06 correctly obtained
		$y - \frac{15}{5} = -0.06(x - \frac{90}{5})$	M1		or $a = \frac{15}{5} - (-0.06) \times \frac{90}{5}$
		y = 4.08 - 0.06x	A1	4	Complete equation correct
	(ii)	Substitute $x = 20.5 (y = 2.85)$	M1		Allow 20 (y = 2.88) or 20.49
		Substitute $x = 19.5$ ($y = 2.91$)	M1		
			A1	3	Answer 0.06 or –0.06, c.w.d
		2.91 - 2.85 = 0.06			
	(iii)	-0.6, 0.5	B1		–0.6 correct
			B1	2	0.5 correct
	(iv)	1.5	B1		
		Calculated equation minimises this	B1	2	Not "Low value for Σe^2 means points near line"
		quantity			
	(v)	$\bar{\mathbf{e}} = \Sigma e_i / 5$	M1		$\Sigma e_i/5$ used
		= 0	A1		Answer 0, cwd, cao
		$\Sigma e_i^2/5$ $(-\operatorname{her} \bar{\mathrm{e}})^2$	M1		$\Sigma e_i^2/5$
		= 0.3	A1	4	0.3 only, must see -0^2 or -0 in variance.
					ie: No working: $\bar{e} = 0$: M1A1; Var = 0.3: M1A0

Σ μ

(Q9, Jan 2005)

$\begin{array}{c} 4 \text{(i)} \ \Sigma d^2 \\ = 14 \\ \end{array}$	M1 A1	Subtr & squ 5 pairs & add
$1 - \frac{6 \times their 14}{5 \times (25 - 1)}$ $= 0.3$	M1 A1 4	dep 1 st M1 $S_{xy} = 48 - \frac{15x15}{5} \{ = 3 \} \{ = 3 \} \} \{ = 55 - \frac{15^2}{5} \} \{ = 10 \} \} \{ = 10 \} \} \{ = 10 \} \} \{ = 10 \} \{ = 10 \} \} \{ = 10 \} \{ = 10 \} \} \} $ their $\frac{S_{xy}}{5} = 10 $ M1dep $= 0.3 $ A1
(ii) Reverse rankings attempted	M1	3 correct
2 5 3 4 1	A1 2	T & I to make $\Sigma d^2 = 40$: 2 mks or 0 mks
	6	

⁽Q1, June 2005)

5 (i) Correct subst in \geq two <i>S</i> formulae	M1	Any correct version
$14464.1 - \frac{265 \times 274.6}{1000}$		or
5	M1	$14464.1 - 5 \times 53 \times 54.92$
$\left(14176.54 - \frac{265^2}{15162.22} - \frac{274.6^2}{15162.22}\right)$	MI I	$\sqrt{(14176.54 - 5 \times 53^2)(15162.22 - 5 \times 54.92^2)}$
$\sqrt{5}$		or fully correct method with $(x - \overline{x})^2$ etc
	A1	
= -0.868 (3 sfs)	3	
(ii) No difference oe physicsandr	a Bastutor de	Pr slightly diff or more acc because of rounding
physiocalian		errors when mult by 2.54 oe
		Not just "more accurate"
(iii)Choose y on x stated	B1ind	or implied, eg by S_{xy}/S_{xx} or $y = ax + b$
		If state <i>x</i> on <i>y</i> , but wking is <i>y</i> on <i>x</i> : B1
$14464 1 - \frac{265 \times 274.6}{1}$		-89.7 and $14464.1-5\times53\times54.92$
5 or -0.682	241	of then $\frac{1}{131.54}$ seen of $\frac{1}{14176.54-5\times53^2}$
$14176 54 - \frac{265^2}{2}$	MI	or correct subst into a correct formula \underline{S}_{xy}
$\frac{14170.54}{5}$		S_{xx}
	Mlind	or $a = \frac{274.6}{5}$ - (their – 0.682) x $\frac{265}{5}$
$y - \frac{274.6}{5} = (\text{their} - 0.682)(x - \frac{265}{5})$		Simplif to 3 terms. Coeffs to ≥ 2 sfs
y = 91(.1) - 0.68(2) x	5	
	A1	cao
49.9 (3sfs) or 50	-	
		Use of x on y: equiv M mks as above
	<u>у</u>	

(Q4, June 2005)

6 (i)	Negative, because (grad or coeff of x in 1^{st} equn or x-value or reg coeff or B or -0.6) is negative	B1	1	Neg because x incr & y decr
(ii)	$x = -1.6 \times 7.0 + 21$ x = 9.8	M1 A1	2	Sub $y=7.0$ in 2^{nd} eqn. Allow 1 sign error If sub in both must choose 2nd
(iii)	y = -0.6(-1.6y + 21) + 13 or similar $\bar{x} = 5, \ \bar{y} = 10$	M1 A1A1	3	Obtain correct eqn in 1 variable. Allow 1 num'l error Allow without bars
Total		6		

(Q1, June 2006)

physicsandmathstutor.com

7 (ia)	Ranks: 2 4 7 5 3 1 6 4 1 3 5 7 2	M1	\geq 5 ranks correct in each set
	7 1 6 3 2 5 4 1 7 2 5 6 3 4	A1	all correct
	Σd^2	M1	dep ranks attempted even if opp orders,
	(= 60)		allow arith errors
	$r_{\rm e} = 1 - \frac{6 \times 60}{100}$	M1	Correct formula with $n = 7$, dep 2^{nd} M1
	7×48		
			calc <i>r</i> for ranks:
			$S_{xx} = S_{yy} = 140 - 28^2/7.$ $S_{xy} = 110 - 28^2/7$
			(= 28) (= -2)
			corr subst in one corr <i>S</i> (any version):M1
	$-\frac{1}{2}$ or 0.071 (2 dms)		corr subst in $r = S_{xy} / \sqrt{(S_{xx}S_{yy})}$:M1
	$= -7_{14}$ or -0.071 (3 dps)	A1 5	
			-0.07 without wking: MIAIM2A0
			No mito unicos in L < 1
(b)	Little (or no) connection (agreement		NO INS UNless $ r_s \leq 1$
(-)	rel'nship) between dist and commission		It their r_s
	Allow disagreement		Must refer to context.
	C	B1ft 1	Not "little corr'n between dist and
		DIR 1	com
			not "strong disagreement"
(c)	Unchanged. No change in rank	B1B1 2	Ignore other comment
(ii)(a)	= -1	B1 1	indep
(b)	Close to -1 or, eg ≈ -0.9	B1	cao
			not referring to "corr'n" rather than r
			allow "neg", not neg corr'n or neg skew
		10	
Total		10	

(Q6, June 2006)

÷

8 (i)	$x = 20; y = 11; x^2 = 96; y^2 = 31; xy$			
	=52)	B1		
	$S_{xx} = 16$ or 3.2	B1		
	$S_{yy} = 6.8$ or 1.36	B1		
	$S_{xy} = 8$ or 1.6	M1		dep $-1 \le r \le 1$
	r = 8 or <u>1.6</u>			ft their S's ($S_{xx} \& S_{yy}$ +ve) for M1 only
	$\sqrt{(16x6.8)}$ $\sqrt{(3.2x1.36)}$	A1	5	
	= 0.767 (3 sfs)			
ii	Small sample oe	B1f	1	
Total		6		

⁽Q2, Jan 2007)

9 (i)	$\frac{\frac{2685 - \frac{140 \times 106.8}{8}}{3500 - \frac{140^2}{8}} \text{ or } \frac{2685 - \frac{8x17.5x13.35}{2500}}{3500 - \frac{136}{8}}$	M1	Correct sub in any correct formula for b (incl. $(x - \overline{x})$ etc)
		AI	106.8 140
	$y - \frac{106.8}{8} = 0.777(x - \frac{140}{8})$	M1	or $a = \frac{100.8}{8} - 0.777 x^{140} / 8$ ft b for M1
	y=0.78x - 0.25 or better or physics and rad	the futor. the	2 sfs sufficient for coeffs
ii	0.78 x 12 – 0.25	M1	M1: ft their equn
	= 9.1 (2 sfs)	Alf 2	A1: dep const term in equn
iiia	Reliable	B1	Just "reliable" for both: B1
b	Unreliable because extrapolating oe	B1 2	
Total		8	

(Q5, Jan 2007)

3500 8x17 5

10	UK Fr Ru Po Ca 1 2 3 4 5 or 5 4 3 2 1 4 3 1 5 2 2 3 5 1 4 Σd^2 (= 24) $r_s = 1 - \frac{6 \times "24"}{5 \times (5^2 - 1)}$ = $-\frac{1}{5}$ or -0.2	M1 A1 M1 M1 A1 5	Consistent attempt rank other judge RCFUP $35214 31452$ $12345 54321$ All 5 d ² attempted & added. Dep ranks att'd Dep 2 nd M1 $\frac{43-15^{2}/5}{\sqrt{((55-15^{2}/5)(55-15^{2}/5)))}}$ Corr sub in ≥ 2 S's M1 All correct: M1	
Total		5		

(Q2, June 2007)

11 (i)	$r = \frac{212 - \frac{24 \times 39}{5}}{\sqrt{(130 - \frac{24^2}{5})(361 - \frac{39^2}{5})}}$	B2	2	$\frac{24.8}{\sqrt{14.8\times56.8}} \text{ or } \frac{24.8}{\sqrt{840.64}} \text{ or } \frac{24.8}{3.85\times7.54} \text{ or } \frac{24.8}{29}$ B2 for correct subst in <i>r</i> B1 for correct subst in any <i>S</i>
ii	R = 0.7 or (B)	B1		(A) and (B) true: B0B0
	Definition of r_s is PMCC for ranks	B1	2	dep 1 st B1
iii	r = 0.855	B1		
	$r_{s} = 0.7$	B 1	2	or "unchanged": B1B1
				Interchanged: B1
Total		6	<u> </u>	

(Q3, Jan 2008)

12 (ia)	202×245.3			correct sub in any correct formula for b
	$\frac{8730.9}{7} = \frac{1658.24}{7}$	M1		eg <u>236.8921</u>
	$\frac{-1}{7300 - \frac{202^2}{7}} \text{or } \frac{1470.86}{1470.86}$			210.1249
	= 1.127 (= 1.13 AG)	A1	2	must see 1.127; 1.127 alone: M1A1
(b)	$y - \frac{245.3}{7} = 1.13(x - \frac{202}{7})$	M1		or $a = \frac{245.3}{7} - 1.13 \times \frac{202}{7}$
	y = 1.1x + 2.5 (or 2.4) or $y = 1.13x + 2.43$	A1	2	2 sfs suff.
				(exact: $y = 1.127399x + 2.50934$)
(ii)(a)	$(1.1() \times 30 + 2.5()) = 35.5$ to 36.5	B1f	1	
(b)	$(1.1() \times 100 + 2.5()) = 112.4$ to 115.6	B1f	1	
(iii)	(a) Reliable	B1		Both reliable: B1 (a) more reliable than (b) B1
				because (a) within data
	(b) Unreliable because extrapolated	B1	2	or (b) outside data B1
				Ignore extras
Total		8		

(Q2, Jan 2009)

13 (i)	Because growth may depend on pH oe	B1 1	In context. Not <i>x</i> is controlled or indep
	or expt is investigating if y depends on x		
ii	$S_{xy} = 17082.5 - 66.5 \text{ x } 1935/8 \ (= 997.8125)$		
	$S_{xx} = 558.75 - 66.5^2/8$ (= 5.96875)		
	$b = S_{xy}/S_{xx}$	M1	Correct sub into any correct <i>b</i> formula
	= 167 (3 sfs)	A1	
	y - 1935/8 = 167''(x - 66.5/8)	M1	or <i>a</i> =1935/8 – "167" x 66.5/8
	y = -1150 + 167x	A1 4	cao NB 3 sfs
iii	$y = -1150 + 167 \ge 7$	M1	ft their eqn for M1 only
	= 19 to 23	A1 2	
iv	No (or little) relationship or correlation	B1 1	or weak or small corr'n.
			Not "agreement"
va	Reliable as r high oe	B1 1	Allow without "interpolation" oe,
			but must include <i>r</i> high
b	Unreliable as extrapolation oe	B1 1	or unreliable as gives a neg value
vi	Unreliable (or No) because r near 0	B1 1	or No because Q values vary widely
	or because little (or no or small) corr'n		for $pH = 8.5$
	(or rel'n)		
Total		11	

(Q9, Jan 2008)

physicsandmathstutor.com

14 (i)	1 2 3 4 5 or 5 4 3 2 1	M1	attempt ranks
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A1 dmathstu M1dep	correct ranks S_{xx} So S_{yy} =55–15 ² / ₅ (=10) or S_{yy} =39–15 ² / ₅ (= -6) $-6/\sqrt{(10\times10)}$
	= - 0.6	A1 5	
(ii)	1 & 3	B1ind	ft if $-1 < (i) < -0.9$, ans 1 & 2
	Largest neg r_s or large neg r_s or strong neg corr'n or close(st) to -1 or lowest r_s	B1dep	NOT: furthest from 0 or closest to ±1 little corr'n most disagreement
Total		7	

(Q4, Jan 2009)

15	first two d's = ±1	B1	$S_{xx} \text{ or } S_{yy} = 28 \text{B1}$
	Σd^2 attempted (= 2)	M1	$S_{xy} = 27 \qquad \text{B1}$
	$1 - \frac{6 \times "2"}{7(7^2 - 1)}$	M1dep	$S_{xy} / \sqrt{(S_{xx}S_{yy})} \qquad \text{M1 dep B1}$
	= ²⁷ / ₂₈ or 0.964 (3 sfs)	A1	1234567 & 1276543 (ans ² / ₇): MR, lose A1
Total		4	

(Q2, June 2009)

16 (a)	A: diag or explanation showing pts close to st line, always increasing	B1	
	B:Diag or expl based on r=1=>pts on st line	B1	Diag or expl based on $r(s) \neq 1 => pts$ not on st line
	=>r(s)=1	B1 3	$=>r \neq 1$ r=1=>pts on st line&r(s) \neq 1=>pts not on st line B1B1 r=1=>r(s)=1 B2
(b)	$\overline{y} = 2.4 \times 4.5 + 3.7$ = 14.5 4.5 = 0.4 × "14.5"- c c = 1.3 a'=x-b'y :-14.5 M1A1;	M1 A1 M1 A1 4	Attempt to sub expression for y x= $0.96x+1.48$ -c oe sub x= 4.5 and solve c= 1.3 14.5 M1A1.(y- 3.7)/2.4= $0.4y$ -c and
	then a'=4.5-0.4x14.5=-1.3 M1A1		sub14.5 M1 c=1.3 A1
Total		[7]	

(Q6, Jan 2010)

17 (i)	<i>x</i> independent or controlled or changed Value of <i>y</i> was measured for each <i>x</i> <i>x</i> not dependent	B1 1	Allow Water affects yield, or yield is dependent or yield not control water supply Not just y is dependent Not x goes up in equal intervals Not x is fixed	
ii	(line given by) minimum sum of squs	B1 B1 2	B1 for "minimum" or "least squares" with inadequate or no explanation	
iii	$S_{xx} = 17.5 or 2.92$ $S_{yy} = 41.3 or 6.89$ $S_{xy} = 25 or 4.17$ $r = \frac{S_{xy}}{\sqrt{(S_{xx}S_{yy})}}$ = 0.930 (3 sf)	B1 M1 A1 3	or $91 - 21^{2}/_{6}$ or $394 - 46^{2}/_{6}$ B1 for any one or $186 - \frac{21 \times 46}{6}/_{6}$ dep B1 0.929 or 0.93 with or without wking B1M1A0 SC incorrect <i>n</i> : max B1M1A0	
iv	Near 1 or lg, high, strong, good corr'n or relnship oe Close to st line or line good fit	B1ft B1 2	<i> r </i> small: allow little (or no) corr'n oe Not line accurate. Not fits trend	
Total		8		

(Q3, June 2009)

18 (i)	$S_{hm} = 0.2412$		Allow x or $\div 5$
	$S_{hh} = 0.10992$		
	$S_{mm} = 27.212$	B1	any one S correct
	$r = \underline{S_{hm}}$	M1	ft their Ss
	$\sqrt{(S_{hh}S_{mm})}$		
	= 0.139 (3 sfs)	A1 3	
(ii)	Small, low or not close to 1 or close	B1 ft	1^{st} B1 about value of r
	to 0 oe		2 nd B1 about diag
	pts not close to line oe	B1	
(iii)	none or unchanged or "0.139" oe	B1 1	
(iv)	Larger oe	B1 1	
Total		[7]	

(Q3, Jan 2010)

19 (i)	Opposite orders or ranks or scores or results or marks $r_s = -1$	B1 1	or reversed, or backwards, or inverse or as one increases the other decreases Needs reason AND value
ii	Attempt Σd^2 (= 6) $1 - \frac{6 \times \Sigma d^2}{3(3^2 - 1)}$ $= -\frac{1}{2}$ oe	M1 M1 A1 3	dep 1 st M1 Allow use wrong table for M1M1
iii	3! or ${}^{3}P_{3}$ or 6 1 ÷ their '6' $\frac{1}{6}$ oe eg $\frac{6}{36}$	M1 M1 A1 3	r attempt list possible orders of 1,2,3 (\geq 3 orders) 2 nd M1 for fully correct method only or $\frac{1}{3} \times \frac{1}{2} (\times 1)$: M1M1
Total		7	

(Q2, June 2010)

20 (i)	If x is contr (or indep) or y depend't, use y on x	B1	Allow x increases constantly, is predetermined, you choose x , you set x , x is fixed, x is chosen
	If neither variable contr'd (or indep) AND want est y from x : use y on x	B1 2	Allow <i>y</i> not controlled AND want est <i>y</i> from <i>x</i>
			Ignore incorrect comments
iia	$S_{xx} = 510000 - \frac{1800^2}{9} \qquad (= 150000)$		or $\frac{510000}{9} - 200^2$ (= 16666.7)
	$S_{xy} = 4080 - \frac{1800 \times 14.4}{9}$ (= 1200)	M1	or $\frac{4080}{9}$ - 200×1.6 (= 133.33)
			M1 for either S
	$b = \frac{1200'}{150000'} \qquad (= 0.008)$	M1	$b = \frac{133.33'}{16666.7'}$ dep correct expressions both <i>S</i> 's
	$y - \frac{14.4}{9} = 0.008(x - \frac{1800}{9})$	M1	or $a = \frac{14.4}{9} - 0.008 \times \frac{1800}{9}$ (= 0)
			Must be all correct for M1
	y = 0.008x (+ 0)	Al 4	CAU thetutor com
iib	312.5 or 313	BIIT I	ft their equn in (iia)
iic	-0.4	B1ft 1	ft their equn in (iia)
iid	Contraction oe	B1(ft)	or length decreased, shorter, pushed in, shrunk, smaller
	Unreliable because extrapolated oe	B1 2	or not in the range of <i>x</i>
			or not in range of previous results
Total		10	

Х

(Q3, June 2010)

21 (i)	7351.12- <u>86.6×943.8</u>	M1		1 st M1 for correct subst in any correct S formula
(.)	$\frac{12}{\sqrt{33.80 \times 943.8^2}} \text{ or } \frac{540.03}{\sqrt{33.80 \times 9433}}$	M1		2^{nd} M1 for all correct subst'n in any correct <i>r</i> formula
	$\sqrt{(658.76 - \frac{60.0}{12})(83663 - \frac{54.0}{12})} = 0.9564 \text{ or } 0.9566 \text{ or } 0.966$	A1 3	Must see at least 2 sfs	0.96 or correct better, no working: M1M1A1
				eg 0.958 → 0.96 with correct working M1M1A0 without working: M0M0A0
ii	Strong (or high or good or close etc) relationship (or corr'n or link) between amount spent on advert & profit	B1 1	Allow Almost complete relationship or Very positive corr'n or Very reliable relationship or Near perfect relationship between spend on advert & profit oe, in context physicsandmathstutor.com	Must state or imply "strong" or "good" or equiv & in context but NOT Strong <i>agreement</i> between etc NOT High spend on ads produces high profits NOT The more spent on adverts, the higher the profit NOT Positive corr'n between spend on ads & profits NOT There is a relationship between spend on ads & profit NOT There is a great relationship between etc NOT ans involving "proportion(al)" Ignore irrelevant or incorrect
				If incorrect r (< 0.9) in (i), no ft for ans "weak rel'nship" here; but correct ans here scores B1 even if inconsistent with their r
iii	Relationship may not continue Corr'n not imply causation	B1 B1 2	Can't extrapolate Any indication that pattern may not continue Must state or imply referring to future Increase in profit may not be due to increase in spend on advertising. Variables may be increasing separately	Allow without context Examples: Can't predict future; Things can change May be recession ahead; Economic situation may change Cost of advertising may increase If spend too much on ads, profit may be reduced as a result Advertising may not be as successful in the future Item may go out of fashion NOT Spending on adverts may not bring high profits NOT Spending more on adverts may not bring higher profits (Since these just restate the question) NOT More money spent on ads will not affect profit Both variables may be affected by a third Other factors may affect profits Advertising not the sole factor affecting profits Two different categories of reason needed, as given above. Two reasons which both fall under the same category: only B1 NOT Because corr'n not equal to 1
iv	$b = \frac{\frac{7351.12 - \frac{86.6 \times 943.8}{12}}{658.76 - \frac{86.6^2}{12}}$	M1	or $\frac{S_{xy}}{S_{xx}}$	ft values of S_{xy} & S_{xx} if clearly shown in (i)
	y = 15.9788 or 16.0 $y - \frac{943.8}{12} = \text{``16.0''}(x - \frac{86.6}{12})$	M1	or $a = \frac{943.8}{12} - \text{``16.0''} \times \frac{86.6}{12}$	
	y = 16x - 37 or better	A1 4	(y = 15.9788x - 36.664)	Coeffs not nec'y rounded, but would round to 16 & 37 These marks can be earned in (v) if not contradicted in (iv)
				If x on y line found: M-marks only $(x = 2.71 + 0.0572y)$
v	"16" × 7.4 – "37"	M1		"16" × 7400 – "37": M0A0
	81400 to 81750		81.4 thousand to 81.7 thousand: M1A1	
Te4-1		Alt 2	but 81.4 to 81.7 alone: M1A0	ft their (iv)
Total		12		

(Q3, Jan 2011)

22 (i)	EDCBA	B1 1	A 5	NOT just 5, 4, 3, 2, 1
(.)			B 4	
			C 3	
			D 2	
			E 1	
iia	$1 - \frac{6\Sigma d^2}{5(5^2 - 1)} = 0.9$	M1		$1 - \frac{6 \times 2}{5(5^2 - 1)}$
	$1 - \frac{6 \times \Sigma d^2}{5 \times 24} = 0.9$ or $0.1 = \frac{6 \times \Sigma d^2}{5 \times 24}$	A1 2	One correct step or better & nothing incorrect for A1	= $1 - \frac{6 \times 2}{5 \times 24}$ or $1 - \frac{12}{5 \times (5^2 - 1)}$ One correct step or better & nothing incorrect for A 1
	$(\Sigma d^2 = 2 \mathbf{AG})$			
				(= 0.9 AG)
b	d^2 : 0, 0, 0, 1, 1 any order	M1	or d: 0, 0, 0, 1, -1 any order	May not be seen
	BACDE or similar	A1 2	Any two adjacent dogs interchanged	
				If clearly comparing second race with third; DECBA or similar:
				B1, but must be clear
Total		5		

(Q8, Jan 2011)

physicsandmathstutor.com

23 (ia)	$\frac{3247 - \frac{251 \times 65}{5}}{-16}$		M1 for correct subst in any correct S formula	
(,	$\sqrt{(14222, 251^2)(855, 65^2)}$ Or $\sqrt{1722.8 \times 10}$	M2	M2 for correct subst'n in any correct r formula	or $\frac{-80}{\sqrt{2}}$
	$\sqrt{(14323 - \frac{1}{5})(855 - \frac{1}{5})}$			√8614×50
	= -0.1219	A1 3	Must see at least 4 sfs	Allow –0.1218
b	Poor/no/little/weak/not strong corr'n or		or slight neg/weak corr'n (oe) between income	eg,
	rel'nship or link between income &		& distance	Poor neg corr'n, so higher distance, lower
	distance oe	B1 1		income
			In context, ie any comment on income &	No rel'nship. Low income doesn't cause low
			distance, even if incorrect	distance
				NOT "Not proportional"
				NOT "negative corr'n"
				No recovery of this mark in (ii)
с	No effect or -0.122 oe	B1 1	eg "Nothing" or "None" oe	Ignore other
				NOT "Little effect" NOT "Not much effect"
ii	r close to 0, or small, or poor corr'n oe	B1	or Weak/no corr'n or poor rel'nship oe	or because small sample
	or $r = -0.122$		or No evidence to link sales & distance	Ignore other
	Unreliable	B1dep	Condone "innacurate" or "incorrect"	Allow:
		2	or "less reliable" or "not that reliable"	"Unreliable because pts do not fit a st line"
			"The data is unreliable"	"Unreliable because pts are scattered"
				"Unreliable because not strong neg"
			Must have correct reason	"Unreliable because <i>r</i> not close to -1"
				"Unreliable because r smaller than (–)0.7"
				NOT "Unreliable because extrapolated": B0B0
				but "Unreliable because extrapolated and poor
				corr'n'': B1B1
Total		7		

(Q1, June 2011)

physicsandmathstutor.com

24	Attempt ranks 4 1 2 3 or 1 2 3 4 or 1 2 3 4 oe	M1	Ignore labels of rows or columns	
	2134 1342 1423	A1	No ranks seen, $d = (0), \pm 1, \pm 1, \pm 2$, or $d^2 = (0), \pm 1, \pm 4$ any order: M1A1	No whips $\Sigma d^2 = 6$: M1A1M1
	Σd^2 attempted (or 6)	M1	NOT $(\Sigma d)^2$	No wking, $\Sigma d^2 = \text{g } 14$: M0A0M0, but can gain 3^{rd} M1
	$1 - \frac{6\Sigma d^2}{4(4^2 - 1)}$	M1		No wking, ans $\frac{2}{5}$: Full mks
	$=\frac{2}{5}$ oe	A1 5		Allow both sets of ranks reversed
				NB incorrect method:
				2341
				2 1 3 4 OR $d = (0), \pm 2, \pm 1, \pm 3$ any order
				OR $d^2 = (0), 4, 1, 9$ any order
				(leading to $\Sigma d^2 = 14$ and $r_s = -\frac{2}{5}$):
				M0A0M1M1A0
Total		5		

(Q2, June 2011)

PhysicsAndMathsTutor.com

physicsandmathstutor.com

25 (i)	x	B1 1	Ignore explanations. "Neither" or "Both": B0	
ii	Diag showing vertical differences only	B1	Allow description instead of diag:	Allow \geq one line, from a point to the line
			"Distances from pts to line // to y-axis" oe	
	State that sum of squares of these is min oe	B1 2	dep vert or horiz lines (not both) drawn or described	Must have Min, Squares, Distances & Sum
iii	-1	B1	Not approx –1	Allow eg:
	Ranks opposite or reversed	B1dep	As x increases, y decreases	-1 because neg corr'n so ranks must be reversed
	or perfect neg corr'n between ranks oe	2		
				Ignore other
				NOT neg corr'n or strong neg rel'nship oe
				NOT comment about "disagreement" or
				"agreement"
iv	"Negative"		nfisiesanamathstutor.com	Any implication of Negative, except
			or any negative value > -1	NOT "Negative gradient" and
	or "Not –1"	B1 1	or "Close to -1"	NOT " -1 " given as the value of <i>r</i>
Total		6		

⁽Q7, June 2011)

26	(i)		<i>x</i> because values (or depths) are fixed (or controlled or chosen or predetermined or manipulated or given oe) because they can be changed or it is changed or because it is not measured ie not "read off" oe or because we change the values ourselves	B1 [1]	Allow "because it goes up in intervals" or "because it is taken at set intervals" Ignore all else NB " <i>x</i> is changed" B1, but " <i>x</i> changes" B0	NOT: x, as values are constant x, as y depends on x x as % sand depends on depth Depth, as not affected by % sand content x, as it is not dependent x, because y is measured x, because it changes y, which is the depth and this is controlled
	(ii)		$S_{xx} = 7344 - \frac{216^2}{9} \qquad (= 2160)$ $S_{yy} = 30595 - \frac{512.4^2}{9} \qquad (= 1422.36)$ $S_{xy} = 10674 - \frac{216\times512.4}{9} \qquad (= -1623.6)$ $r = \frac{\sqrt[n]{-1623.6^n}}{\sqrt[n]{2160}\times\sqrt[n]{422.36^n}}$ $= -0.926 (3 \text{ sfs})$	M1 physics M1 A1	correct subst in any S formula sandmathstutor.com correct subst in all Ss & in r	
	(iii)	(a)	$b = \frac{"-1623.6"}{"2160"} \text{or } -0.75 \text{ or } -\frac{451}{600}$ $y - \frac{512.4}{9} = (-0.75)(x - \frac{216}{9})$ $y = -0.75x + 75(.0) (2 \text{ sf})$ $\text{or } y = -\frac{451}{600}x + \frac{5623}{75}$	[3] M1 M1 A1 [3]	ft S_{xy} & S_{xx} from (ii) or $a = \frac{512.4}{9} - 0.75 \times (-\frac{216}{9})$ or $\frac{5623}{75}$ 2 sf is enough Allow $y = -0.75x + (-75)$	If ans to (i) is y, & x on y found here: $b' = \frac{"-1623.6"}{"1422.36"}$ (= -1.14) M1 $x - \frac{216}{9} = "-1.14"(y - \frac{512.4}{9})$ M1 x = -1.14y + 89(.0) A1 If ans to (i) is x, but x on y found here: B1 only for x = -1.14y + 89(.0)
	(iii)	(b)	r close to -1 (or high or strong), $ r $ close to 1	B1	Allow strong or good or high corr'n or rel'nship etc	or strong neg corr'n. Award this mark even if comment linked to 100 instead of linked to 25. BUT: " <i>r</i> close to -1, so unreliable": B0 Can still score next marks if mention "within" and "outside range"
			25 within range of data oe, so reliable 100 outside range of data oe, so unreliable	B1 B1	or so more reliable or so less reliable	or 100 gives neg %age
			Must give reasons	[3]	If (ii) $ r < 0.7$:poor corr'n oeB1f25 unreliableB1f	"Small sample so unreliable"
			Allow "accurate" instead of "reliable"		100 unreliable B1f	B0B0B0 Ignore all else

(Q2, Jan 2012)

27	(a)	3 5 1 4 2 3 1 5 2 4 1 4 3 5 2 5 2 3 1 4	M1 A1	Attempt ranks for both variables Correct ranks May be implied by $\Sigma d^2 = 10$	If use alphabetical order for one or both sets of ranks, M0A0. eg if 1, 2, 3, 4, 5, seen or $\Sigma d^2 = 14$ or 16, check carefully. But can score 2 nd & 3 rd M1s. Also see example below
		Σd^2 attempted (= 10)	M1	S_{xx} or $S_{yy} = 55 - \frac{15^2}{5}$ (=10) or $S_{xy} = 50 - \frac{15^2}{5}$ (=5)	
		$r_s = 1 - \frac{6\Sigma d^2}{5(5^2 - 1)} \qquad \text{dep} \ge M1 \text{ gained}$ $= 0.5$	M1	$\frac{5}{\sqrt{10\times10}}$	A = 1, B = 2 etc eg 2 4 1 5 3 4 2 3 5 1 Max M0A0M1M1A0
			AI [5]		
	(b)	$n(n^2 - 1)$ greater or increases or becomes $(n+1)((n+1)^2 - 1)$	B1ind	or "denom increases" or "÷ by larger number"or "fraction decreases" or "value taken from 1 decreases" oe	Allow increases to 6×35 NOT just " <i>n</i> increases"
		Σd^2 unchanged (or not increase) Allow d^2 unchanged	Blind	or $d = 0$ or $d^2 = 0$ or the difference is 0	NOT $n(n^2 - 1)$ changes NOT "difference is unchanged"
		r _s greater	B1	$dep \ge B1$ or no explanation	Use of incorrect formula can score max B1B1B0 (B0 for r_s greater)
			[3]	"Little diff between rankings so <i>r_s</i> same" or "rankings unchanged" B0B0B0	"Increases because more agreement" B1 only

(Q4, Jan 2012)

physicsandmathstutor.com

28	(i)	$\Sigma x = 1366 \Sigma y = 17.6 \Sigma x^2 = 374460 \Sigma y^2 = 62.82$ $\Sigma xy = 4784.8$	B1	any three correct; may be implied by 2 S's	OR, using S_{3} $\overline{x} = \frac{1366}{5}$ or 2	$\sum_{xx} = \Sigma (x - \overline{x})^2$ etc: 273.2, $\overline{y} = \frac{17.6}{5}$ or 3.52, either:B1
		$S_{xx} = 374460 - \frac{1366^2}{5}$ or 1268.8			$(-23.2)^2 + (-$	$(-3.2)^2 + (-9.2)^2 + 16.8^2 + 18.8^2$
		$S_{yy} = 62.82 - \frac{17.6^2}{5}$ or 0.868			0.68 ² +0.18 ² -	$+(-0.32)^{2}+(-0.02)^{2}+(-0.52)^{2}$
		$S_{xy} = 4784.8 - \frac{1366 \times 17.6}{5}$ or -23.52	M1	correct sub in any correct S formula, ft Σ s, \overline{x} , \overline{y}	(-23.2)×0.68 + (-3	3.2)×0.18 + (-9.2)×(-0.32) +16.8×(-0.02) +18.8×(-0.52)
		$r = \frac{-23.52}{\sqrt{1268.8 \times 0.868}}$ or $\frac{-23.52}{33.186}$ oe	M1	corr sub into 3 <i>S</i> s and <i>r</i> , ft Σ s, \overline{x} , \overline{y}	If no workin	g seen:
		= -0.709 (3 sfs)	A1 [4]	cao	-0.71: SC 3;	-0.7: SC 1
	(ii)	$b = \frac{"-23.52"}{"-24.52"}$ or $-\frac{147}{7000}$ or -0.0185 (3 sfs)	M1	ft their S_{xy} & S_{xx} & Σ s from (i)	use of x on y line:
		$y - \frac{"17.6"}{5} = "-0.0185"(x - \frac{"1366"}{5})$	M1	or $a = \frac{"17.6"}{5} - "(-0.0185)" \times 10^{-10}$	<u>"1366"</u> 5	$b' = \frac{"-23.52"}{"0.868"}$ (or -27.1) M0
		$\Rightarrow v = -0.019x + 8.6$ or better, is 2 sfs enough	Δ 1	if a incorrect, must see cao: must be " $v =$ "	method for M1	$x - \frac{"1366"}{5} = "-27.1"(y - \frac{"17.6"}{5})$
			Л	coeffs that round to -0.019 &	8.6 to 2 sfs	or $a' = \frac{"1366"}{5} - "(-27.1)" \times \frac{"17.6"}{5}$) M1
		$(y = -0.019 \times 280 + 8.6 (= 3.39 \text{ to } 3.41))$				(if a' incorrect, must see method for M1)
				6 4 1 1000 1 MINU 1 100	0 (, 200000)	x = -27.1y + 369 cao A1
		Est sales = ± 3390 to ± 3410	A 1.C	Allow "k" for thousand	0 (not 280000)	
		or 5.59 mousaid to 5.41 mousaid	[4]	No working, ans in range: M	1M1A0A1	3277 or 3278 A0
	(iii)	There may be other factors oe		or any suggestion of another	factor that	NOT:
				could be involved, eg Depend	ls on state of	Tourists & sales not nec'y linked
				the economy oe		Could be a coincidence
		Correlation does not imply causation oe	B1			Might be different other years
				Must state or clearly imply:		More tourists wd incr sales
				EITHER <u>corr'n</u> does not impl	ly causation	-0.8 is not strong corr'n
			[1]	OR there could be <u>another</u> fac	<u>etor</u> involved	Sample is small
			[1]	Ignore all else		Could be affected by extremes
						Neg corr'n not nec'y imply neg relnship

(Q1, June 2012)

29	(i)	(a)	1	B1 [1]		NOT close to 1
	(i)	(b)	-1	B1 [1]		NOT close to -1
	(ii)		$\Sigma d^{2} \text{ attempted} \qquad (= 10)$ $1 - \frac{6 \times \Sigma d^{2}}{4(4^{2} - 1)} \qquad \text{physicsa}$ $= 0$	M1 andmath [3]	if $\Sigma d^2 = 10$, may be implied by next line if $\Sigma d^2 \neq 10$, must see working dep M1 stutor.com Use of $(\Sigma d)^2$ M0M0A0	$S_{xx} \text{ or } S_{yy} = 30 - \frac{100}{4} (=5) \text{ or}$ $S_{xy} = 25 - \frac{100}{4} (=0) \qquad \text{M1}$ $\frac{0}{\sqrt{5\times5}} \qquad \qquad \text{M1}$
	(iii)		No ft from (i)(a), (i)(b) & (ii) ia: Total (or perfect or max or complete)agreement They have the same opinions/ranks/numbers etc They were identical	B1	Identical opinions/views/marks/ranks/ decisions/results/numbers oe Agree on all the ranks	NOT: They agree or Strongly agree They agree most ranks Similar rankings As A's ranks increase so do B's Perfect relnship
			 ib: Opposite/reverse opinions/views/marks/ranks/ decisions/results oe ii: For r = 0 must state or imply: 	B1	Total (or max or complete or perfect) disagreement A's highest is B's lowest oe "Opposite" seen is sufficient	NOT: Don't agree any ranks Disagree or Strongly disagree Disagree on all ranks Perfect neg relnship
			either <u>NO</u> relationship or similar		No relationship/pattern/link/similarity between opinions/views/marks/ranks/ decisions/results oe opinions/etc not related scoring appears random	Different views Don't agree but some rel'nshp Ranks all different No corr'n betw judges' views Don't agree nothing in common at all
			or indicate <u>BOTH</u> agreement & disagreement or <u>NEITHER</u> agree nor disagree		Neither agree nor disagree oe Both agree & disagree oe Agree for some, disagree for others oe mixed/varied opinions on the ranks	not much in common completely different orders opinions completely different half way between (a) and (b)
			or <u>DIFFERENT</u> but <u>NOT OPPOSITE</u>	B1	All three parts: Must refer to (or imply) opinions/views/marks/ranks/scores or (dis)agreement, or relationship or pattern oe. NOT just corr'n	Ignore all other

(Q5, June 2012)

30	(i)	$S_{\rm rr} = 8700000 - \frac{7000^2}{6}$ (= 533333)			
		$S_{xy} = 509900 - \frac{7000 \times 456}{6} \qquad (= -22100)$	M1	Correct subst'n in any correct S formula	
		$b = -\frac{"22100"}{"533333"} \text{ or } -\frac{663}{16000} (=-0.0414)$	M1	Correct subst'n in any correct b formula	
		$y - \frac{456}{6} = $ "-0.0414"($x - \frac{7000}{6}$)	M1	from two correct S formulae ft their b except if using r	or $a = \frac{456}{6} - ("-0.0414") \times \frac{7000}{6}$ oe ft "b"
		y = -0.0414x + 124 (3 sf)	A1 [4]	or $y = -\frac{663}{16000} x + \frac{3979}{32}$ or $y = -0.041x + 124$	Allow $y=-0.04x+124$ if -0.041 seen
	(ii)	70 to 72	B1	or 71 per thousand, NOT 71000	above No ft from (i) Ignore method
	(iii)	Extrapolation oe	B1	Allow "2400 is beyond graph" } "Not shown on the graph" or }1 st B1 only "Line drops low, or below 0" } "Outlier" }	"Line only allows for countries poorer than Nigeria" 1 st B1 Allow "Value for Nigeria is -ve 1 st B1
		Corr'n not high or small sample	B1	Poor corr'n oe, or pts not close to line oe 2^{nd} B1	NOT "Other factors may apply" oe Ignore all else
	(1-1)	2	[2]	2	
	(1V)	$S_{xx} = 8700000 + 1300^2 - \frac{(7000 + 1300)^2}{7}$		or $10390000 - \frac{(8300)^2}{7} = \frac{3840000}{7}$ or 548571	
		$S_{yy} = 36262 + 96^2 - \frac{(456 + 96)^2}{7}$ $S_{xy} = 509900 + 1300 \times 96 - \frac{8300 \times 552}{7}$	M1 A1	or $45478 - \frac{552^2}{7} = \frac{13642}{7}$ or 1948.86 or $634700 - \frac{8300 \times 552}{7} = -\frac{138700}{7}$ or -19814.3	Correct sub in any correct <i>S</i> formula M1 Correct value of any <i>S</i> seen or implied by <i>r</i> A1
		$r = \frac{"-19814.3"}{\sqrt{"548571"} \times "1948.86"}$	M1 physics	Correct subst'n in any correct r formula from andmethstilliofno900rrect S formulae, ie all correct method	SC If $n = 6$, but otherwise correct allow M1A0M1A0 (ans $r = -0.574$, must see wking)
		= -0.606 (3 sf)	A1 [4]		
	(v)	No effect oe	B1 [1]	Stay the same oe Allow just "No"	Ignore all else

⁽Q3, Jan 2013)

physicsandmathstutor.com

E.							
	31	(i)		$\Sigma d^2 = n$ seen or implied	M1		Trial method:
				1 $\frac{6 \times anything}{6} = \frac{63}{6}$ or $\frac{6 \times anything}{6} = \frac{2}{2}$		$6\times\Sigma d^2$ on $6\times n^2$ on $6\times n^2$	$\Sigma d^2 = 14$ M1
				$n(n^2-1)$ = 65 or $n(n^2-1)$ = 65	M1	eg $1 - \frac{1}{n(n^2 - 1)}$ of $1 - \frac{1}{n(n^$	$1 - \frac{6 \times 14}{14(14^2 - 1)}$ oe M1
						$1 - \frac{6 \times 6^2}{n(n^2 - 1)} = \frac{63}{65}$	$=\frac{63}{65}$ A1 (0.969 : A0)
				$\frac{6}{(n^2-1)} = \frac{2}{65}$ or eg 390 = 2(n^2 - 1)	A1 depM2	Any <u>correct</u> eqn after cancelling <i>n</i> or take out factor of <i>n</i> ; can be implied by $n = 14$	$\Rightarrow n = 14 \qquad A1 \\ Conclusion needed$
				$n = 14$ NOT $n = \pm 14$	A1	But A0 if $n = 14$ clearly follows from incorrect working	
					[4]	If no working or unclear working, but $n = 14$, M1M1A1A1	
		(ii)	(a)	$r = 1 \implies$ st line, hence true (or $r_s = 1$) oe Explanation essential Must state or imply "true"	B1	$r = 1 \implies y$ incr as x incr, so $r_s = 1$ oe Allow "True because perfect corr'n" or "True because $r = 1$ means pts ranked in order so $r_s = 1$ " " $r = 1$ means the ranks will agree" " $r = 1$ means all d's are 0, hence $r_s = 1-0 = 1$ "	NOT " <i>r</i> incr so ranks incr" NOT " $r_s = r$ for ranks so true" NOT "True because strong corr'n"
		(ii)	(b)	Diag, ≥ 3 pts, not on st line but with $x_{n+1} > x_n$ & $y_{n+1} > y_n$, Zig zag line or curve, moving up & right	[1] B1	Ignore explan if correct diag given Ignore any st line drawn Allow numerical example for which $r \neq 1$ but $r_s = 1$. If expl'n contradicts diag, mark diag	
				so r_s can still be 1	B1dep [2]	For 2 nd B1 must state or imply "false"	
				eg "expon'l curve gives $r \neq 1$ but $r_s = 1$ " B1B1			

(Q7, Jan 2013)